From 1 - 2 / 2
  • This is the output from high-resolution model simulations of ocean conditions and melting beneath the floating part of Thwaites Glacier. The model is designed to study how these conditions change as the geometry of Thwaites Glacier evolved from 2011-2022. There is one simulation using the geometry from each year during this period, derived from satellite observations. The simulations are repeated for different ocean model forcing conditions, as described in the associated paper. PH was supported by the NERC/NSF Thwaites-MELT project (NE/S006656/1). ITGC contribution number 099. *******PLEASE BE ADVISED TO USE VERSION 2.0 DATA******* (Version 1 had the seabed bathymetry and ice shelf topography files incorrectly oriented.)

  • This is the output from high-resolution model simulations of ocean conditions and melting beneath the floating part of Thwaites Glacier. The model is designed to study how these conditions change as the geometry of Thwaites Glacier evolved from 2011-2022. There is one simulation using the geometry from each year during this period, derived from satellite observations. The simulations are repeated for different ocean model forcing conditions, as described in the associated paper. PH was supported by the NERC/NSF Thwaites-MELT project (NE/S006656/1). ITGC contribution number 099. *******PLEASE BE ADVISED TO USE VERSION 2.0 DATA******* Version 2 is available at https://doi.org/10.5285/473eb97c-63a8-4002-8b72-e7f07b2ab228. (Version 1 has the seabed bathymetry and ice shelf topography files incorrectly oriented.)